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Abstract

Simple Temporal Networks have proved useful
in applications that involve metric time. How-
ever, many applications involve events whose
timing is not controlled by the execution agent.
A number of properties relating to overall con-
trollability in such cases have been introduced
in [Vidal and Ghallab, 1996] and [Vidal and
Fargier, 1997], including Weak and Strong Con-
trollability. We derive some new results con-
cerning these properties. In particular, we
prove the negation of Weak Controllability is
NP-hard, confirming a conjecture in [Vidal
and Fargier, 1997]. We also introduce a more
general controllability property of which Weak
and Strong Controllability are special cases. A
propagation algorithm is provided for deter-
mining whether the property holds, and we
identify tractable cases where the algorithm
runs in polynomial time.

1 Introduction

Simple Temporal Networks [Dechter et al., 1991] have
proved useful in Planning and Scheduling applications
that involve metric time (e.g. [Bienkowski and Hoebel,
1998; Muscettola et al., 1998a]). However this formal-
ism does not adequately address an important aspect
of real execution domains: the occurrence time of some
events may not be under the complete control of the
execution agent. For example, when a spacecraft com-
mands an instrument or interrogates a sensor, a vary-
ing amount of time may intervene before the operation
is completed. In cases like this, the execution agent
cannot select the precise time delay between events in
accord with the timing of previously executed events.
Instead, the value is selected by Nature independently
of the agent’s choices. This can cause inconsistencies
at execution time even if the Simple Temporal Network
appeared consistent at plan generation time. The prob-
lem of control of temporal networks with uncertainty
was first addressed formally in [Vidal and Ghallab, 1996]
and [Vidal and Fargier, 1997].

In practice, temporal uncertainty is usually eliminated
by padding each uncertain interval with a flexible wait
period. For example, a task duration may be modeled
as the upper bound of the task’s possible executions. In
this case, the event at the end of a task does not repre-
sent the time at which the task actually ends. Instead, it
constitutes a waypoint, i.e., a time by which we can guar-
antee that the task has ended. Synchronization with re-
spect to waypoints can now proceed without uncertainty
and Simple Temporal Networks are completely adequate.
Although this use of waypoints provides a workable so-
lution to the problem of execution uncontrollability, its
indiscriminate application may not be desirable or pos-
sible. For example, it may obstruct tight synchroniza-
tion with respect to follow-on requirements. Moreover,
it may not be possible to add a wait period after each un-
certain delay if several uncontrollable delays are causally
connected.

In this paper we introduce Waypoint Controllability,
a general framework for a formal analysis of when net-
works that incorporate uncontrollable delays can be suc-
cessfully executed. Waypoint controllability generalizes
the concepts of Strong and Weak Controllability [Vidal
and Ghallab, 1996; Vidal and Fargier, 1997]. Roughly
speaking, Strong Controllability supplies a guarantee of
a fixed execution that works irrespective of the outcomes
of the uncontrollable delays, while the absence of Weak
Controllability means that there are some outcomes for
which no execution will work. Subject to restrictions on
the type of network, an algorithm is presented in [Vi-
dal and Ghallab, 1996] that determines Strong Control-
lability in deterministic polynomial time. It is shown
in [Vidal and Fargier, 1997] that the negation of Weak
Controllability is in NP and it is conjectured that the
problem is NP-Complete.

We prove here that the negation of Weak Controlla-
bility is indeed NP-Complete. This complexity result
applies also to Waypoint Controllability, of which Weak
Controllability is a special case. Sufficient conditions are
presented for the tractability of Waypoint Controllabil-
ity. From these, we are able to derive the tractability
of Strong Controllability while relaxing the restrictions
in [Vidal and Ghallab, 1996]. We also provide a prop-
agation algorithm for determining Waypoint Controlla-
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Figure 1: Simple Temporal Network.
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Figure 2: Distance Graph.

bility. Finally we discuss the relationship between Way-
point Controllability and Dynamic Controllability, where
knowledge of uncontrollable delays is updated during ex-
ecution.

2 Preliminaries

We assume the reader is broadly familiar with Simple
Temporal Networks [Dechter et al., 1991]. The definition
is briefly reviewed here to set the stage for subsequent
developments.

A Simple Temporal Network (STN) is a graph in which
the edges are labelled with upper and lower numerical
bounds. The nodes in the graph represent temporal
events or timepoints, while the edges correspond to con-
straints on the durations between the events. Formally,
an STN may be described as a 4-tuple < N,E, l, u >
where N is a set of nodes, E is a set of edges, and
l : E → IR ∪ {−∞} and u : E → IR ∪ {+∞} are func-
tions mapping the edges into extended Real Numbers.
Figure 1 shows an example of an STN. Figure 2 shows
the corresponding distance graph [Dechter et al., 1991],
which is an alternate representation useful for mathe-
matical analysis. Note that lower bounds are negated to
give the lengths of the reverse edges. Edges of infinite
length are omitted. (Given a distance graph, one can
also find a corresponding STN, so the representations
are interchangeable.) An STN is consistent if and only
if the distance graph does not contain a negative cycle.

Controllability problems [Vidal and Ghallab, 1996;
Vidal and Fargier, 1997] arise in STNs where the edges,
which we will call links, are divided into two classes,
causal links and requirement links. The causal links are
regarded as representing intervals whose duration is con-
trolled by Nature, subject to the limits imposed by the
upper and lower bounds. The timepoints are regarded
as variables. The goal is that they should have values
that satisfy all the requirement links as well as whatever
values are chosen by Nature for the causal links.

Definition 1 A Simple Temporal Network with Uncer-
tainty [Vidal and Fargier, 1997] (STNU) is a 5-tuple
< N,E, l, u, C >, where N,E, l, u are as in a STN, and
C is a subset of the edges. The edges in C are called
the causal links, and the other edges are the requirement
links. We require 0 < l(e) < u(e) for each causal link e.

The requirement that the lower bounds of causal links
be positive corresponds to the assumption that causal
influences propagate only forward in time. (Only theo-
rem 5 actually makes use of this.) Also notice that if a
link e is rigid (i.e., l(e) = u(e)), then there is little point
in making e a causal link, since there is no uncertainty
in the outcome.

Each set of choices made by Nature for the causal links
may be thought of as reducing the STNU to an ordinary
STN. Thus, an STNU determines a family of STNs, as
in the following definition.

Definition 2 Suppose Γ = < N,E, l, u, C > is an
STNU. A projection [Vidal and Ghallab, 1996] of Γ is
a Simple Temporal Network derived from Γ where each
requirement link is replaced by an identical STN link,
and each causal link e is replaced by an STN link with
equal upper and lower bounds [b, b] for some b such that
l(e) ≤ b ≤ u(e).

A boundary projection [Vidal and Fargier, 1997] is
one where, for each causal link e, the above b is chosen
so that b = l(e) or b = u(e).

The simplest type of controllability property is con-
cerned with whether some outcomes of the causal choices
render it impossible to satisfy the requirements.

Definition 3 An STNU is Weakly Controllable [Vidal
and Ghallab, 1996] if every one of its projections is a
consistent STN. If an STNU is not Weakly Controllable,
we will say it is Weakly Uncontrollable.

It is shown in [Vidal and Fargier, 1997] that Weak Un-
controllability can be determined in non-deterministic
polynomial time, and that in fact the checking may be
limited to the boundary projections. (Recall that consis-
tency of a distance graph may be checked in polynomial
time by the Bellman-Ford-Moore algorithm [Cormen et
al., 1990].)

Theorem 1 (Vidal and Fargier, 1997) If any pro-
jection is inconsistent, then a boundary projection is in-
consistent.

3 Weak Uncontrollability
NP-Completeness

We now address the issue of showing Weak Uncontrol-
lability is NP-Complete. Since it is known from [Vidal
and Fargier, 1997] that the problem is in NP , it remains
to show it is NP-Hard.

Theorem 2 Weak Uncontrollability is NP-Hard.

Proof: We show this by reduction of the 3-Coloring
Problem, which is known to be NP-Complete [Cormen
et al., 1990].
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Figure 3: Nodes and Colors Widget.

Our goal will be to construct a mapping from coloring
problems to STNU distance graphs such that a solution
to the coloring problem maps to a negative cycle in some
projection of the STNU, and vice versa. For expository
purposes, we adopt the widget approach of [Cormen et
al., 1990].

The first widget describes how nodes and colors from
the coloring problem are represented in the STNU dis-
tance graph. This is illustrated in figure 3 for a coloring
problem with 3 nodes {A,B,C}. The node A from the
coloring problem maps to a pair of nodes AX and AY .
The three possible colors of A correspond to three con-
current paths fromAX toAY as shown. (The labels Red,
Green, and Blue do not actually appear in the temporal
network; they are merely shown for the convenience of
the reader.) A similar mapping is shown for nodes B
and C.

Suppose the coloring problem has n nodes
{A1, . . . , An} (listed in some arbitrary order). We
link all the node widgets to form a cycle by adding
temporal edges AiY → Ai+1X for 1 ≤ i < n and
AnY → A1X. This is also illustrated in figure 3. Note
that each complete set of color choices determines a
cycle in the network. Conversely, each cycle selects a
single color for each node.

So far, we have not assigned lengths to the distance
graph edges. The final edge in the STNU distance graph
(e.g., CY → AX in figure 3) is given a length of −1.
Apart from the mutex widgets (discussed below), all the
other edges have zero length. Notice that, so far, all
combinations of color choices give rise to slightly negative
(value -1) cycles in the distance graph.

Our next task is to represent in the temporal net-
work the mutual exclusion constraints determined by the
edges of the coloring problem. (Nodes connected by an
edge must have different colors.) We will do this by set-
ting up “mutex” widgets between color paths that cor-
respond to conflicting color choices. Figure 4 shows how
to make two color paths mutually exclusive from nega-
tive cycles. Here L is a positive number large enough
so that if a path through the widget has length L or
greater, then it cannot possibly be on a negative cycle.
(Setting L = +2 suffices here.) Notice the edges P → Q
and Q→ P are each shown with two values for the edge
length; these correspond to a causal link from P to Q
with bounds [2L, 4L], and the different lengths are for
the different boundary projections.

There are four paths through the mutual exclusion
widget that may potentially lie on negative cycles: the
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Figure 4: Mutual Exclusion Widget.
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two color paths A1 → P → Q → A2 and B1 → Q →
P → B2; and the two short paths A1 → P → B2 and
B1 → Q → A2. Notice that both of the short paths
pick up a value of L, so they are definitely not on nega-
tive cycles. The two color paths may or may not be on
negative cycles.

Recall that to check for Weak Uncontrollability, we
need only consider boundary projections, where the P →
Q causal link has a rigid length of either 2L or 4L. In the
distance graph, this corresponds to values of either +2L
and −2L, respectively, or +4L and −4L, respectively,
for the forward (from P to Q) and backward (from Q to
P ) edges. In the first case, the color path from A1 to
A2 has distance 0, while that from B1 to B2 is 2L. In
the second case, the path from B1 to B2 has distance
0 while that from A1 to A2 has distance 2L, i.e., the
values are reversed. Notice that in either case, at most
one of the two color paths can be on a negative cycle,
i.e., they mutually exclude each other from such cycles.

The same node in the color graph may participate in
several color constraints. In the temporal network, we
represent these by mutual exclusion widgets connected in
series, as illustrated in figure 5, where each “mutex” box
indicates a mutual exclusion widget between the AX →
AY color path and some other color path (not shown).

This completes the construction. Now suppose the
coloring problem has a solution. We can use the color
choices to determine a cyclic path in the distance graph
that passes through each mutual exclusion widget at
most once, and then traverses the −1 edge. Since there
is a projection that sets the chosen passages through the
mutual exclusion widgets to zero distance, the cycle will
have a total length of −1. Thus, the constructed STNU
is not Weakly Controllable. Conversely, suppose there is



a negative cycle in some projection. This cannot include
any of the short paths, since if it did, the cycle would
be non-negative. Consequently, the cycle includes only
color paths, as illustrated in figure 3. Thus, it selects a
single color for each color node. If two of the selections
were in conflict, then the cycle would pass through some
mutex widget twice, which contradicts the assumption
that the cycle is negative. Thus, the color selection pro-
vides a solution to the coloring problem.

This reduction of the 3-Coloring Problem shows Weak
Uncontrollability is NP-Complete. 2

4 Waypoint Controllability

Now we consider a form of controllability in which we
distinguish a subset of events, called waypoints, whose
timing is set independently of the causal outcomes.

Definition 4 Let Γ = < N,E, l, u, C > be an STNU.
Suppose W is a non-empty subset of N . We say Γ is
Waypoint Controllable with respect to W if there is a
fixed assignment of time values to the nodes in W that
can be extended to a solution in every projection of Γ.
The nodes in W are called waypoints.

In [Vidal and Ghallab, 1996], the property of Strong
Controllability is defined similarly, except a specific set
of waypoints is used. Their definition corresponds to a
waypoint set Cs∪(N \Ce), where Cs and Ce are the sets
of start and end points, respectively, of the causal links.
However, Strong Controllability lacks flexibility. For ex-
ample, if two causal links are chained (the end of one
is the start of the other), Strong Controllability requires
that both the start and end of the earlier causal link be
waypoints. However, a fixed assignment to those points
cannot be consistent with varying durations of a flexible
causal link. Thus, the network is not Strongly Control-
lable. This limits the usefulness of Strong Controllability
in many networks; in the example above, some other set
of waypoints, for instance N \Ce, may be more realistic.

Note that Weak Controllability is a special case of
Waypoint Controllability where the waypoint set is a sin-
gleton, since it is always possible to select a single node
and give it a fixed value that is extendible to a solution
in every consistent projection.

We will shortly prove a useful characterization of Way-
point Controllability. However, some additional defini-
tions are needed. Given an STNU Γ and a set of way-
points W , we can define a Simple Temporal Network
S(Γ,W ) as follows. The set of nodes of S(Γ,W ) is W .
Between every pair of nodes x and y in W , we place a
distance graph edge e whose length is given by

length(e) = min{δp(x, y) | p ∈ P}

where P is the set of projections of Γ and δp(x, y) is the
shortest-path distance from x to y in the distance graph
of projection p. This leads to the following result, which
may be regarded as a generalization of the result in [Vi-
dal and Ghallab, 1996] concerning Strong Controllability
in a restricted network.

Theorem 3 Γ is Waypoint Controllable with respect to
W if and only if it is Weakly Controllable and S(Γ,W )
is a consistent STN.

Proof: Suppose Γ is Waypoint Controllable with re-
spect to W . Then there is a fixed assignment s : W → IR
that can be extended to a solution in every projec-
tion of Γ. It follows that every projection has a so-
lution, i.e., Γ is Weakly Controllable. It also follows
that s(y)− s(x) ≤ δp(x, y) for every projection p, where
δp gives the shortest-path distances as before. Hence,
s(y) − s(x) ≤ min{δp(x, y) | p ∈ P}. Thus, s gives a
solution to S(Γ,W ).

Conversely, assuming s is a solution to S(Γ,W ), the
argument can be reversed to deduce that s(y) − s(x) ≤
δp(x, y) for every projection p, and every x and y in W .
By Weak Controllability, every projection is consistent,
so by Decomposability [Dechter et al., 1991], s can be
extended to a solution for every projection. 2

It can be shown that in the min{δp(x, y) | p ∈ P}
minimizations, the set P may be restricted to boundary
projections without affecting the minimum value. Nev-
ertheless, the cardinality of P is generally exponential in
the size of the problem. Indeed, the proof of Theorem 2
can be adapted to show that the minimization problem
is NP-hard. However, theorem 3 leads to a propaga-
tion algorithm for computing Waypoint Controllability,
and there are important special cases where it runs in
polynomial time.

5 Propagation Algorithm

The propagation algorithm is an elaboration of the ap-
proach used for checking STN consistency [Dechter et
al., 1991; Cormen et al., 1990], and requires that every
node be reachable from the initial node, which must be
selected to be a waypoint. The basic idea is that we
can perform a separate propagation for each projection
until we reach a waypoint. At the waypoint, the propa-
gated values for the different projections can be merged,
and only the minimum value carried forward. The pro-
cess continues with new independent propagations to the
next waypoint, and so on. Notice that the updates at
the waypoints simulate an ordinary STN propagation in
S(Γ,W ). Both STN inconsistency and Weak Uncontrol-
lability imply a negative cycle, so propagation to qui-
escence is a reliable indicator of controllability by theo-
rem 3.

Actually, we can do even better if we observe that large
segments of the propagation are the same for projections
that are closely related. This suggests sharing the work
of propagation between the projections. We do this by
associating a tag with each propagated value. The tag
carries a description of which causal links have been tra-
versed so far, and which of the boundary values were
used in the traversals. We say one tagged value subsumes
another if its tag is as general (i.e., its causal choices are
a subset of the other) and its value is as good (less than
or equal to the other). Subsumed tagged values are sub-
ject to deletion. Otherwise, the tagged propagations do



procedure Propagate-Controllability
begin

Queue <- {};
Propagate-Value (0, {}, Initial-Node, Queue);
while Queue is Non-Empty do
begin

<X,V,T> <- Pop (Queue);
if Bellman-Ford bound is exceeded then

report Uncontrollability and halt;
for each causal edge E:X->Y from X do
begin

if E/2 does not occur in T then
Propagate-Value (V+length1(E), T U {E/1}, Y, Queue);

if E/1 does not occur in T then
Propagate-Value (V+length2(E), T U {E/2}, Y, Queue);

end
for each non-causal edge E:X->Y from X do

Propagate-Value (V+length(E), T, Y, Queue);
end

end

procedure Propagate-Value (Val, Tag, X, Queue)
begin

TV <- (if X is Waypoint then <Val,{}> else <Val,Tag>;
if TV is not subsumed by an existing tagged value of X then
begin

Delete tagged values of X subsumed by TV;
Add TV to tagged values of X;
Add <X,val(TV),tag(TV)> to Queue;

end
end

Figure 6: Algorithm for Waypoint Controllability

not interact until they reach a waypoint, where the tags
are reset to empty. The usual Bellman-Ford cutoff termi-
nates the propagation in cases where the network is not
controllable. Figure 6 shows a pseudo-code description of
the algorithm. Note that length1(E) and length2(E)
are the lengths of E corresponding to the two boundary
values, and the choice descriptors E/1 and E/2 indicate
which of those was used in the propagation.

Similarly to the ordinary STN case, the propagation
algorithm can be modified to propagate upper and lower
time bounds. Thus, it potentially provides not just a
single solution for the waypoints, but a flexible set of
acceptable time assignments with the same decompos-
ability property as for an ordinary STN. An execution
algorithm can make use of this flexibility [Tsamardinos et
al., 1998] to help manage contingencies that are unantic-
ipated, in addition to the formally represented uncertain
durations considered here.

Note that in general the number of possible tags grows
exponentially with the number of causal links. Thus,
in the worst case, the time and space complexities are
exponential. Fortunately, the waypoints can serve to
limit the complexity, as seen in the following result.

Theorem 4 Suppose M is the maximum number of
causal links that can occur in a path with no interior
waypoints. Then the complexity of the Waypoint Con-
trollability propagation algorithm is O(M222M |N ||E|).

Proof: Since the tags get reset at waypoints, the size of
tags is limited to the number of causal links encountered
between waypoints. Under the condition of the theorem,
at most 2M different tagged values can reside at any
node. The update across an edge then requires at most
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Figure 7: Need for Tags

O(22M ) subsumption tests, where each test can be done
in O(M2) time. The Bellman-Ford bound restricts the
number of edge updates to |N |·|E| [Cormen et al., 1990].
Thus, the total complexity is O(M222M |N ||E|). 2

Corollary 4.1 The algorithm can determine Strong
Controllability in polynomial time.

Proof: The waypoint set used in Strong Controllability
has a waypoint at the start of each causal link. Thus,
at most two causal links can occur in a path between
waypoints, so M is bounded for this class of problems.
2

We remark that a “no U-turn” restriction [Muscettola
et al., 1998b] is insufficient to avoid interference between
projections in computing minimum distance. For exam-
ple, in figure 7, where B → C is a causal link, the prop-
agation A → B → C would produce a value of 5 at C,
which blocks the propagation A → C → B that would
provide a shorter distance of 2 from A to B. This kind of
interference is avoided by the tag mechanism used here.

6 Dynamic Controllability
Note that Waypoint Controllability requires the setting
of times for non-waypoint events to depend on the causal
outcomes. However, this is only feasible in practice if in-
formation about the causal outcomes is available in time.
One scenario is where precise information about causal
outcomes is obtained by observation when they occur.
This corresponds to a property called Dynamic Control-
lability defined in [Vidal and Fargier, 1997]. Informally,
an STNU is Dynamically Controllable if there is a map-
ping from projections to solutions such that the partial
solution up to any time depends only on the durations of
the causal outcomes that have completed by that time.
We are interested in conditions under which Waypoint
Controllability implies Dynamic Controllability.

The following conditions will be relevant. Consider
the distance graph of a Waypoint Controllable network.
We say a node x is insulated from another node y if every
path from y to x passes through a waypoint. (Note that a
waypoint is therefore insulated from every node.) A node
x is downstream from a node y if, in every projection,
there is a path of negative length from x to y. (We will
also say y is upstream of x in this case.) Note that if x
is downstream from y, then x must occur later than y
in any solution of any projection. Finally, a node x is
protected from y if x is either downstream from y or is
insulated from y. This leads to the following result.

Theorem 5 Let Γ be an STNU that is Waypoint Con-
trollable with respect to some set of waypoints. Suppose



every node x is either itself a causal link endpoint, or
is protected from every causal link endpoint. Then Γ is
Dynamically Controllable.

Proof: From the definition of Waypoint Controllabil-
ity, there is a fixed assignment of times to the waypoints
that is consistent with every projection. Consider any
projection p. We can obtain a solution of p by propa-
gating from the fixed times of the waypoints, and then
choosing the latest possible time for each node [Dechter
et al., 1991]. (Ensured to be finite by adding a source
vertex as in [Cormen et al., 1990, page 541].) This de-
fines a mapping Ψ from projections to solutions.

Let x be any node. Suppose p1 and p2 are two projec-
tions that agree on causal outcomes that are completed
no later than x. Then they must agree on outcomes of
causal links whose endpoint is upstream from x. We wish
to show that Ψ(p1) and Ψ(p2) must agree on the timing
of x. We prove this by induction on the partial ordering
imposed by the downstream relation, which allows us to
suppose by induction that Ψ(p1) and Ψ(p2) agree on the
timing of all nodes upstream of x.

First consider the case where x is the endpoint of a
causal link e. Let x′ be the startpoint of e. By the
definition of STNU, l(e) > 0. Thus, x′ is upstream of
x. It follows that Ψ(p1) and Ψ(p2) agree on the timing
of x′. Also p1 and p2 agree on the outcome of e, since
it is completed no later than x. Thus, Ψ(p1) and Ψ(p2)
agree on the timing of x.

Otherwise, x is not the endpoint of a causal link. Let e
be any causal link, and suppose its endpoint is y. By the
condition of the theorem, x is either downstream of y or
is insulated from y. In the former case, y is upstream of
x, so by the inductive hypothesis Ψ(p1) and Ψ(p2) agree
on y. Thus, any value propagated from y to x will be the
same for p1 and p2. If on the other hand x is insulated
from y, then any propagation from y to x is blocked by
the fixed assignments given the waypoints. Thus, x will
have the same propagated window for both p1 and p2,
and so Ψ will assign x the same time value in both cases.

It follows that the value of x depends only on causal
outcomes that are completed no later than x. Thus, Γ
is Dynamically Controllable. 2

Corollary 5.1 (Vidal and Fargier, 1997) Strong
Controllability implies Dynamic Controllability.

Proof: Strong Controllability corresponds to a set of
waypoints such that every node is either a causal link
endpoint or a waypoint. In the latter case it is automat-
ically insulated from every node. 2

7 Closing Remarks

Waypoint Controllability provides a useful analysis tool
that can be used by a planner to decide whether grant-
ing the executive access to uncertain events compromises
controllability of a flexible plan. We have shown that
the cost of controllability analysis can be affordable, pro-
vided that the planner judiciously manages the place-
ment of uncontrollable links in the plan topology.

One important consequence of Waypoint Controllabil-
ity is the possibility of devising more general and princi-
pled guidelines on the introduction of wait periods in a
plan. The end time point of a suitable wait link can be
made a waypoint. Therefore, appropriately located wait
periods can partition a plan into compartments that are
insulated from each other as far as the effects of uncer-
tain events are concerned.

Previous work on Strong Controllability restricted the
plan topologies for which controllability is guaranteed,
and severely limited the extent to which an executive
can react to uncertain events. For example, Strong Con-
trollability does not allow an executive to have access
to an event linking two uncontrollable tasks. Waypoint
Controllability shows that such limitations can be lifted
provided that small subnetworks of uncontrollable links
(with arbitrary topology) are insulated from the rest of
the plan through the appropriate use of wait periods.
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